
Post Office Box 579, Pacific Grove, California 93950, (408) 373-3403 

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM 

USER'S MANUAL 

COPYRIGHT © 1976, 1978 

DIGIT AL RESEARCH 



Copyright © 1976, 1978 by Digital Research. All rights 
reserved. No part of this publication may be reproduced, 
transmitted, transcribed, stored in a retrieval system, or trans
lated into any language or computer language, in any form or 
by any means, electronic, mechanical, magnetic, optical, 
chemical, manual or otherwise, without the prior written 
permission of Digital Research, Post Office Box 579, Pacific 
Grove, California 93950. 

Disclaimer 

Digital Research makes no representations or warranties with 
respect to the contents hereof and specifically disclaims any 
implied warranties of merchantability or fitness for any 
particular purpose. Further, Digital Research reserves the 
right to revise this publication and to make changes from 
time to time in the content hereof without obligation of 
Digital Research to notify any person of such revision or 
changes. 

r 



1. 

2. 

3. 

Table of Contents 

ED TUTORIAL • · · · • • · • • 

l~l Introduction to ED • . . . . 
1.2 ED Operation .•. 

1.3 Text Transfer Functions 

1.4 Memory Buffer Organization. 

1.5 Memory Buffer Operation ..•. 

Command Strings 

. . . 

1 

1 

1 

1 

5 

5 

7 1.6 

1.7 

1.8 

1.9 

Text Search and Alteration. . . • • 8 

Source Libraries . . . . . . • • • . • • 11 

Repetitive Command Execution •• • • 12 

ED"ERROR CONDITIONS •• . . . . . • 13 

CONTROL CHARACTERS AND COMMANDS . 14 

ii 





ED USER'S MANUAL 

1. ED TUTORIAL 

1.1. Introduction to ED. 

ED is the context editor for CP/M, and is used to create 
and alter CP/M source files. ED is initiated in CP/M by 
typing 

{

<filename> } 

ED <filename>.<filetype> 

In general, ED reads segments of the source file given by 
<filename> or <filename> • <filetype> into central memory, 
where the file is manipulated by the operator, and subse
quently written back to disk after alterations. If the 
source file does not exist before editing, it is created by 
ED and initialized to empty. The overall operation of ED 
is shown in Figure 1. 

1.2. ED Operation 

ED operates upon the source file, denoted in Figure 1 
by x.y, and passes all text through a memory buffer where 
the text can be viewed or altered (the number of lines which 
can be maintained in the memory buffer varies with the line 
length, but has a total capacity of about 6000 characters 
in a 16K CP/M system). Text material which has been edited 
is written onto a temporary work file under command of the 
operator. Upon termination of the edit, the memory buffer 
is written to the temporary file, followed by any remaining 
(unread) text in the source file. The name of the original 
file is changed from x.y to x.BAK so that the most recent 
previously edited source file can be reclaimed if necessary 
(see the CP/M commands ERASE and RENAME). The temporary 
file is then changed from x.$$$ to x.y which becomes the 
resulting edited file. 

The memory buffer is logically between the source file 
and working file as shown in Figure 2. 

1.3. Text Transfer Functions 

Given that n is an integer value in the range 0 through 
65535, the following ED commands transfer lines of text 
from the source file through the memory buffer to the tem
porary (and eventually final) file: 



Source 

File 

After 
Edit (E) 

Backup 

File 

x.BAl< 

Figure 1. Overall ED Operation 

Append 
CA) 

Source 
Libraries 

(R) 

Memory Buffer 

Insert 
(I) 

Write 

Type 
(T) 

Temporary 

File 

After 
Edit 

(E) 

New 
Source 

File 
x.y 

Note: the ED program accepts both lower and upper case ASCII 
characters as input from the console. Single letter commands 
can be typed in either case. The U command can be issued to 
cause EO to translate lower case alphabetics to upper case as 
characters are filled to the memory buffer from the console. 
Characters are echoed as typed without translation, however. 
The -u command causes EO to revert to "no translation" mode •. 
ED starts with an assumed -U in effect. 

2 



Figure 2. liemory Buffer Organization 

Source File 

1 . ' .' Florst Llone " 

Memory Buffer 

1 'First Line" 
.. . 

2 "Appended,' 2' Bu ffered \. 
. - .. , " \. - , ,--

3 :-. 'Lines '\ ,,~ '_ "Text '\. ~ 

SP -;-.'~'\.- _ ' '-',," 
~I 1\ MP-:'" 

I unprocessed:. N~I Free 

: Source I Append : Memory 

I Lines ~ -, Space : 
L - - - - - - -I L.- _______ ..... 

Next 
Write 

1 

2 

3 

TP .. 

Temporary File 

, ~irst Line '\ 

, Processed' \." 

- '\ T~xt '\ \. '\ 
-'- \ --, ,\ , 

, , -,-, \ -, 

Free File 

Space 

1.- _______ I 

Figure 3. Logical Organization of Memory Buffer 

first 
line 

Memory Buffer 

---------<cr><lf> 

----~---<cr><lf> 

current GJ ------- cp ------<cr><lf> line CL 

last 
line --------<cr><lf> 

3 



nA<cr>* - append the next n unprocessed source 
lines from the source file at Sp to 
the end of the memory buffer at MP. 
Increment SP and MP by n. 

nW<cr> 

E<cr> 

H<cr> 

O<cr> 

Q<cr> 

write the first n lines of the memory 
buffer to the temporary file free space. 
Shift the remaining lines n+l through 
MP to the top of the memory buffer. 
Increment TP by n. 

end the edit. Copy all buffered text 
to temporary file, and copy all un
processed source lines to the temporary 
file. Rename files as described 
previously. 

move to head of new file by performing 
automatic E command. Temporary file 
becomes ,the new source file, the memory 
buffer is emptied, and a new temporary 
file is created (equivalent to issuing 
an E command, followed by a reinvocation 
of ED using x.y as the file to edit). 

return to original file. The memory 
buffer is emptied, the temporary file 
id deleted, and the SP is returned to 
position I of the so\~ce file. The 
effects of the previous editing commands 
are thus nullified. 

quit edit with no file alterations, 
return to CP/M.--

There are a number of special cases to consider. If the 
integer n is omitted in any ED command where an integer is 
allowed, then 1 is assumed. Thus, the commands A and W append 
one line and write 1 line, respectively. In addition, if a 
pound sign (i) is given in the place of n, then the integer 
65535 is assumed (the largest value for n which is allowed). 
Since most reasonably sized source files can be contained 
entirely in the memory buffer, the command iA is often issued 
at the beginning of the edit to read the entire source file 
to memory. Similarly, the command iW.writes the entire buffer 
to the temporary file. Two special fonns of the A and W 

*<cr> represents the carriage-return key 

4 



commands are provided as a convenience. The command OA fills 
the current memory buffer to at least half-full, while OW 
writes lines until the buffer is at least half empty. It 
should also be noted that an error is issued if the memory 
buffer size is exceded. The operator may then enter any 
command (such as W) which does not increase memory require
ments. The remainder of any partial line read during the 
overflow will be brought into memory on the next successful 
append. 

1.4. Memory Buffer Organization 

The memory buffer can be considered a sequence of source 
lines brought in with the A command from a source file. The 
memory buffer has an associated (imaginary) character pointer 
CP which moves throughout the memory buffer under command of 
the operator. The memory buffer appears logically as shown 
in Figure 3 where the dashes represent characters of the 
source line of indefinite length, terminated by carr~e
return «cr»and line-feed «If» characters, and c 
represents the imaginary character pointer. Note that the 
CP is always located ahead of the first character of the 
first line, behind the last character of the last line, or 
between two characters. The current line CL is the source 
line which contains the CP. 

1.5. Memory Buffer Operation 

Upon initiation of ED, the memory buffer is empty (ie, 
CP is both ahead and behind the first and last character). 
The operator may either aPiend lines (A command) from the 
source file, or enter the ines directly from the console 
with the insert command 

I<cr> 

ED then accepts any number of input lines, where each line 
terminates with a <cr> (the <If> is supplied automatically), 
until a control-z (denoted by tz is typed by the operator. 
The CP is positioned after the last character entered. The 
sequence 

I<cr> 
NOW IS THE<cr> 
TIME FOR<cr> 
ALL GOOD MEN<cr> 
tz 

leaves the memory buffer as shown below 

5 



NOW IS THE<cr><lf> 
TIME FOR<cr><lf> 
ALL GOOD MEN<cr><lf~ 

~ 

Various commands can then be issued which manipulate the CP 
or display source text in the vicinity of the CP. The 
commands shown below with a preceding n indicate that an 
optional unsigned value can be specified. When preceded by 
±, the command can be unsigned, or have an optional preceding 
plus or minus sign. As before, the pound sign (#)is replaced 
by 65535. If an integer n is optional, but not supplied, 
then n=l is assumed. Finally, if a plus sign is optional, 
but none is specified, then + is assumed. 

±B<cr> - move CP to beginning of memory buffer 
if +, and to bottom if -. 

±nC<cr> - move CP by ±n characters (toward front 
of buffer if +), counting the <cr><lf> 
as two distinct characters 

±nD<cr> - delete n characters ahead of CP if plus 
and behind CP if minus. 

±nK<cr> - kill (ie remove) ±n lines of source text 
using CP as the current reference. If 
CP is not at the beginning of the current 
line when K is issued, then the charac
ters before CP remain if + is specified, 
while the characters after CP remain if -
is given in the command. 

±nL<cr> - if n=O then move CP to the beginning of 
the current line (if it is not already 
there) if nFO then first move the CP to 
the beginning of the current line, and 
then move it to the beginning of the 
line which is n lines down (if +) or up 
(if -). The CP will stop at the top or 
bottom of the memory buffer if too large 
a value of n is specified. 

6 



±nT<cr> - If n=O then type the contents of the 
current line up to CP. If n=l then 
type the contents of the current line 
from CP to the end of the line. If 
n>l then type the current line along 
with n-l lines which follow, if + 
is specified. Similarly, if n>l and 
- is given, type the previous n lines, 
up to the CP. The break key can be 
depressed to abort long type-outs. 

±n<cr> - equivalent to ±nLT, which moves up or 
down and types a single line 

1.6. Command Strings 

Any number of commands can be typed contiguously (up to 
the capacity of the CP/M console buffer), and are executed 
only after the <cr> is typed. Thus, the operator may use 
the CP/M console command functions to manipulate the input 
command: 

Rubout 

Control-U 

Control-C 

Control-E 

remove the last character 

delete the entire line 

re-initialize the CP/M System 

return carriage for long lines 
without transmitting buffer 
(max 128 chars) 

Suppose the memory buffer contains the characters shown 
in the previous section, with the CP following the last 
character of the buffer. The command strings shown below 
produce the results shown to the right 

Command String 

1. B2T<cr> 

2. SCOT<cr> 

Effect 

move to beginning 
of buffer and type 
2 lines: 
"NOW IS THE 

TIME FOR" 

move CP 5 charac
ters and type the 
beginning of the 
line 
"NOW I" 

7 

Resulting Memory Buffer 

L~NOW IS THE<cr><lf> 
~ TIME FOR<cr><lf> 

ALL GOOD MEN<cr><lf> 

NOW I(§PJ S THE<cr><lf> 



3. 

4. 

5. 

6. 

7. 

2L-T<cr> 

-L#K<cr> 

I<cr> 
TIME TO<cr> 
INSERT<cr> 
tz 

-2LiT<cr> 

<cr> 

move two lines down 
and type previous 
line 
"TIME FOR" 

move up one line, 
delte 65535 lines 
which follow 

insert two lines 
of text 

move up two lines" 
and type 65535 
lines ahead of CP 
"NOW IS THE" 

move down one line 
and type one 1 ine' 
"INSERT" 

1.7. Text Search and Alteration 

NOW IS THE<cr><lf> 

TIME FOR<cr><lf> 

~ ALL GOOD MEN<cr><lf> 

\.=fJ 

NOW IS THE<cr><lf>. ~ 
(.:EJ 

NOW IS THE<cr><lf> 

TIME TO<cr><lf> 

INSERT<cr><lf>~ 
~ 

NOW IS THE<cr><lf> ~ 
~ TIME TO<cr><lf> 

INSERT<cr><lf> 

NOW IS THE<cr><lf> 

TIME TO<cr><lf>~~ 
~ INSERT<cr><lf> 

ED also has a command which locates strings within the 
memory buffer. The command takes the form 

where cl through ck represent, the characters to match followed 
by either a <cr> or control -z*. ED starts at the current 
position of CP and attempts to match all k characters. The 
match is attempted n times, and if successful, the CP is 
moved directly after the character ck~ If the n matches are 
not successful, the CP is not moved from its initial position. 
search strings can include--:rr (control-l), which is replaced 
by the pair of symbols <cr><lf>. 

*The control-z is used if additional commands will be typed 
following the tz. 

8 



The following commands illustrate the use of the F 
command: 

Command String 

1. B#T<cr> 

2. FS T<cr> 

3. FI tzOTT 

Effect 

move to beginning 
and type entire 
buffer 

find the end of 
the string "s T" 

find the next "I" 
and type to the 
CP then type the 
remainder of the 
current line: 
"TIME FOR" 

Resulting Memory Buffer 

,6 NOW IS THE<cr><lf> 
~ . 

TIME FOR<cr><lf> 

ALL GOOD MEN<cr><lf> 

NOW IS T ~ HE<cr><lf> 
t..:!:l 

NOW IS THE<cr><lf> 

TI ~ME FOR<cr><lf> cp 
ALL OD MEN<cr><lf> 

An abbreviated form of the insert conunand is also allowed, 
which is often used in conjunction with the F conunand to make 
simple textual changes. The form is: 

c <cr> 
n 

where c1 through c n are characters to insert. If the inser
tion string is terminated by a tz, the characters c1 through 
c n are inserted directly following the CP, and the CP is 
moved directly after character en. The action is the same 
if the command i"s followed by a <cr> except that a <cr><lf> 
is automatically inserted into the text following character 
cn. Consider the following command sequences as examples 
of the F and I commands: 

Command String Effect 

BITHIS IS tz<cr> Insert "THIS IS " 
at the beginning 
of the text 

9 

Resulting Memory Buffer 

THIS IS~OW THE <cr><lf> 

~ 
TI1.fE FOR<cr><lf> 

ALL GOOD MEN<cr><lf> 



FTIMEtz-4DIPLACEtz<cr> 

find "TIME" ·and delete 
it; then insert "PLACE" 

3FOtz-3DSDICHANGESt<cr> 

-8CISOURCE<cr> 

find third occurrence 
of "0" (ie the second 
"0" in GOOD), delete 
previous 3 characters 7 
then insert "CHANGES" 

move back 8 characters 
and insert the line 
"SOURCE<cr><lf>" 

THIS IS NOW THE<cr><lf> 

PLACE tfE:l FOR<cr><lf> 
ALL GOOD MEN<cr><lf> 

THIS IS NOW THE <cr><lf> 

PLACE FOR<cr><lf> 

ALL CHANGES r:CPl< cr> <1f> 

THIS IS NOW THE<cr><lf> 

PLACE FOR<cr><lf> 
ALL SOURCE<cr><lf> 

~CHANGES<cr><lf> 
~ 

ED also provides a single command which combines the F and 
I commands to perform simple string substitutions. The command 
takes the form 

n S c1 c 2 0 0 oCk tz d 1 d 2 o 0 odm {<~~>} 
and has exactly the same effect as applying the command string 

a total of n times. That is, ED searches the memory buffer 
starting at the current position of CP and successively sub
stitutes the second string <,for the first string until the 
end of buffer, or until the substitution has been performed 
n times. 

As a convenience, a command similar to F is provided by 
ED which automatically appends and writes lines as the search 
proceeds. The for.m is 

{ ctrz } n N c l c 2 ••• ck ' 

which searches the entire source file for the nth occurrence 
of the string clc2 ••• ck (recall that F fails if the string 
cannot be found in the current buffer). \ The operation of the 

10 



N command is precisely the same as F except in the case that 
the string cannot be found within the current memory buffer. 
In this case, the entire memory contents is written (ie, an 
automatic #W is issued). Input'lines are then read until 
the buffer is at least half full, or the entire source file 
is exhausted. The search continues in this manner until the 
string has been found n times, or until the source file has 
been completely transferred to the temporary file. 

A final line editing function, called the juxtaposition 
command takes the form 

with the following action applied n times to the memory buffer: 
search from the current CP for the next occurrence of the 
string clc2 ••• ck. If found, insert the string ,dl!d2••• ,ci"." 
and move CP to follow dm• Then delete all characters fo!lowing 
CP u~ to (but not including) the string el,e2, •.• eQ , leaving 
CP d~rectly after dm. If el,e2, ••• eq cannot be found, then 
no deletion is made. If the current line is 

~ NOW IS THE TI~1E<cr><lf> 
t:R.I 

Then the command 

JW tzWHATtztl<cr> 

Results in 

NOW WHAT,~ <cr><lf> 
~ 

(Recall that tl represents the pair <cr><lf> in search and 
substitute strings). 

It should be noted that the number of characters allowed 
by ED in the F,S,N, and J commands is limited to 100 symbols. 

1.8. Source Libraries 

ED also allows the inclusion of source libraries during 
the ,editing process with the R command. The form of this 
command is 

11 



where flf2 •• fn is the name of a source file on the disk with 
as assumed filetype of 'LIB'. ED reads the specified file, 
and places the characters into the memory buffer after CP, 
in a manner similar to the I command. Thus, if the command 

RMACRO<cr> 

is issued by the operator, ED reads from the file MACRO. LIB 
until the end-of-file, and automatically inserts the charac
ters into the memory buffer. 

1.9. Repetitive Command Execution 

The macro command M allows the ED user to group ED com
mands together for repeated evaluation. The M command takes 
the form: 

where clc2 ••• ck represent a string of ED commands, not inclu
ding another M command. ED exeoutes the command string n 
times if n>l. If n=O or 1, the command string is executed 
repetitively until an error condition is encountered (e.g., 
the end of the memory buffer is reached with an F command). 

As an example, the following macro changes all occur
rences of GAMMA to DELTA within the current buffer, and 
types each line which is changed: 

MFGAMMAtz-SDIDELTAtzOTT<cr> 

or equivalently 

MSGAMMAtzDELTAtzOTT<cr> 

12 



2. ED ERROR CONDITIONS 

On error conditions, ED prints the last character read 
before the error, along with an error indicator: 

? unrecognized command 

> memory buffer full (use one of 
the commands D,K,N,S, or W to 
remove characters), F,N, or S 
strings too long. 

cannot apply command the number 
of times specified (e.g., in 
F command) 

o cannot open LIB file in R 
command 

Cyclic redundancy check (CRe) information is written with 
each output record under CP/M in order to detect errors on 
subsequent read operations. If a CRC error is detected, CP/M 
will type 

PERM ERR DISK d 

where d is the currently selected drive (A,B, ••• ). The oper
ator can choose to ignore the error by typing any character 
at the console (in this case, the memory buffer data should 
be examined to see if it was incorrectly read), or the user 
can reset the system and reclaim the backup file, if it 
exists. The file can be reclaimed by first typing the con
tents of the BAK file to ensure that it contains the proper 
information: 

T·YPE x. BAK<cr> 

where x is the file being edited. Then remove the primary 
file: 

ERA x.y<cr> 

and rename the BAX file: 

REN x.y=x.BAK<cr> 

The file can then be re-edited, starting with the previous 
version. 

13 



3. CONTROL CHARACTERS AND COMMANDS 

The following table summarizes the control characters 
and commands available in ED: 

-
Control Character 

tc 

te 

ti 

tl 

tu 

tz 

rubout 

break 

14 

Function 

system reboot 

physical <cr><lf> (not 
actually entered in 
command) 

logical tab (cols 1,8, 
15, ••• ) 

logical <cr><lf> in 
search and substitute 
strings 

line delete 

string terminator 

oharacter delete 

discontinue command 
(e.g., stop typing) 



COnunand 

nA 

±B 

±nC 

±nD 

E 

nF 

H 

I 

nJ 

±nK 

±nL 

nM 

nN 

o 

±nP 

Q 

R 

nS 

±nT 

± U 

nW 

nZ 

±n<cr> 

Function 

append lines 

begin bottom of buffer 

move character positions 

delete characters 

end edit and close files 
(normal end) 

find string 

end edit, close and reopen 
files 

insert characters 

place strings in juxtaposition 

kill lines 

move down/up lines 

macro definition 

find next occurrence with 
autos can 

return to original file 

move and print pages 

quit with no file changes 

read library file 

sUbstitute strings 

type lines 

translate lower to upper case if U, 
no translation if -U 
write lines 

sleep 

move and type (±nLT) 

15 





Appendix A: ED 1.4 Enhancements 

The ED context editor contains a number of commands which enhance its 
usefulness in text editing. The improvements are found in the addition of line numbers, 
free space interrogation, and improved error reporting. 

The context editor issued with CP/M 1.4 produces absolute line number prefixes 
when the "V" (Verify Line Numbers) command is issued. Following the V command, 
the line number is displayed ahead of each line in the format: 

.nnnnn: 

where nnnnn is an absolute line number in the range 1 to 65535. If the memory buffer 
is empty, or if the current line is at the end of the memory buffer, then nnnnn appears 
as 5 blanks. 

The user may reference an absolute line number by preceding any com mand by 
a number followed by a colOTi, in the same format as the line number display. In this 
case, the ED program moves the current line reference to the absolute line number, 
if the line exists in the current memory buffer. Thus, the command 

345:T 

is interpreted as "move to absolute line 345, and type the line." Note that absolute 
line numbers are produced only during the editing process, and are not recorded with 
the file. In particular, the line numbers will change following a deleted or expanded 
section of text. 

The user may' also reference an absolute line number as a backward or forward 
distance from the current line by preceding the absolute line number by a colon. Thus, 
the command 

:400T 

is interpreted as "type from the current line number through the line whose absolute 
number is 400." Combining the two line reference forms, the command 

345::400T 

for example, is interpreted as "move to absolute line 345, then type through absolute 
line 4~~." Note that absolute line references of this sort can precede any of the 
standard ED com mands. 

A special case of the V command, "0 V" , prints the memory buffer statistics in 
the form: 

free/total 

where "free" is the number of free bytes in the memory buffer (in decimaI), and "total" 
is the size of the memory buffer. 



ED 1.4 also includes a "block move" facility implemented through the "X" (Xfer) 
command. The form 

nX 

transf ers the next n lines from the current line to a temporary file called 

X$$$$$$$.LIB 

which is active only during the editing process. In general, the user can reposition 
the current line reference to any portion of the source file and transfer lines to the 
temporary file. The transferred line accumulate one after another in this file, and 
can be retrieved by simply typing: 

which is the trivial case of the library read command. In this case, the entire 
transferred set of lines is read into the memory buffer. Note that the X command 
does not remove the transferred lines from the memory buffer, although a K command 
can be used directly after. the X, and the R command does not empty the transferred 
line file. That is, given that a set of lines has been transferred with the X command, 
they can be re-read any number of times back into the source file. The command 

0x 

is provided, however, to empty the transferred line file. 

Note that upon normal completion of the ED program through Q or E, the 
temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist 
if lines have been transferred, but will generally be empty (a subsequent ED invocation 
will erase the temporary file). 

Due to common typographical errors, ED 1.4 requires several potentially disas
terous commands to be typed as single letters, rather than in composite commands. 
The commands 

E (end), H (head), 0 (originaI), Q (quit) 

must be typed as single letter commands. 

ED 1.4 also prints error messages in the form 

BREAK "x" AT c 

where x is the error character, and c is the command where the error occurred. 




